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Training Foundation Models from Scratch—
Fully Open Source
• Show credibility
• Generate awareness
• Provide feedback



Foundation Models Released

• AMD-OLMo-1B
• Introducing the First AMD 1B Language Models: AMD OLMo

• Instella-3B
• Introducing Instella: New State-of-the-art Fully Open 3B Language Models — 

ROCm Blogs
• Instella-VL-1B

• Instella-VL-1B: First AMD Vision Language Model — ROCm Blogs
• Instella-Long

• Introducing Instella-Long: A Fully Open Language Model with Long-Context 
Capability — ROCm Blogs

• Instella-T2I
• https://arxiv.org/abs/2506.21022 
• https://rocm.blogs.amd.com/artificial-intelligence/instella-t2i/README.html

We’re hiring

https://www.amd.com/en/developer/resources/technical-articles/introducing-the-first-amd-1b-language-model.html
https://rocm.blogs.amd.com/artificial-intelligence/introducing-instella-3B/README.html
https://rocm.blogs.amd.com/artificial-intelligence/Instella-BL-1B-VLM/README.html
https://rocm.blogs.amd.com/artificial-intelligence/instella-long-context/README.html
https://rocm.blogs.amd.com/artificial-intelligence/instella-long-context/README.html
https://arxiv.org/abs/2506.21022
https://rocm.blogs.amd.com/artificial-intelligence/instella-t2i/README.html


AMD Developer Cloud

AMD University Program AI & HPC Cluster

https://www.amd.com/en/developer/resources/cloud-access/amd-developer-cloud.html
https://www.amd.com/en/corporate/university-program/ai-hpc-cluster.html


Outline

• A brief history of multimodality models
• Understanding
• Generation
• Unification
• Agentic

• Special topics
• Does image help with reasoning?
• Token compression

• Summary and future directions
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Research
Vision-Language was a niche area
Object detector as feature extractor
Not end-to-end
Multimodal encoder architecture

Industry
Limited vocabulary

Limited domain
Vocab expansion

Domain customization

---2021



Oscar: Object-Semantics Aligned Pre-Training for Vision-Language Tasks,  X. Li, X. Yin, Y. Li, P. Zhang, X. Hu, L. Zhang, L. Wang, H. Hu, L. Dong, F. Wei, Y. Choi, J. Gao,  04/13/2020

Oscar: Object-Semantics Aligned Pre-Training 
for Vision-Language Tasks (2020)
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• Flamingo: April 29, 2022, https://arxiv.org/abs/2204.14198
• CoCa:        May 4, 2022, https://arxiv.org/abs/2205.01917
• GIT:             May 27, 2022, https://arxiv.org/abs/2205.14100

2021-2023

https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2205.14100


Flamingo: a Visual Language Model for Few-
Shot Learning

Alayrac, Donahue, Luc, Miech, Barr, Hasson, Lenc, Mensch, Millican, Reynolds, Ring, Rutherford, Cabi, Han, Gong, Samangooei, 
Monteiro, Menick, Borgeaud, Brock, Nematzadeh, Sharifzadeh, Binkowski, Barreira, Vinyals, Zisserman, Simonyan,  2022/04/29, 
https://arxiv.org/abs/2204.14198

https://arxiv.org/abs/2204.14198


CoCa: Contrastive Captioners are Image-Text 
Foundation Models 

J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, Y. Wu, 2022/05/04, https://arxiv.org/abs/2205.01917

https://arxiv.org/abs/2205.01917


GIT: A Generative Image-to-text Transformer 
for Vision and Language

J. Wang, Z. Yang, X. Hu, L. Li, K. Lin, Z. Gan, Z. Liu, C. Liu, L. Wang, 2022/05/27, https://arxiv.org/abs/2205.14100

https://arxiv.org/abs/2205.14100




GPT-4V
September 2023

2023---



Dawn of LMMs

• GPT-4V(vision): 
• GPT-4V(ision) system card

• https://openai.com/research/gpt-4v-system-card
• GPT-4V(ision) technical work and authors

• GPT-4V(ision) technical work and authors (openai.com)
• The Dawn of LMMs: preliminary explorations with GPT-4V(ision)

• https://arxiv.org/abs/2309.17421

https://openai.com/research/gpt-4v-system-card
https://openai.com/contributions/gpt-4v
https://arxiv.org/abs/2309.17421


GUI-Navigation

A. Yan, Z. Yang, W. Zhu, K. Lin, L, Li, J. Wang, J. Yang, Y.Zhong, J.McAuley, J. Gao,  Z. Liu,  L, Wang, GPT-4V in Wonderland: Large Multimodal Models for Zero-Shot Smartphone GUI Navigation,2023,  https://arxiv.org/pdf/2311.07562.pdf



Open Source LMMs (December, 2023)

• BLIP2
• InstructBLIP
• MiniGPT-4
• LLaVA
• …

C. Fu, P. Chen, Y. Shen, Y. Qin, M. Zhang, X. Lin, Z. Qiu, W. Lin, J. Yang, X. Zheng, K. Li, X. Sun, R. Ji, 
MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models, https://arxiv.org/pdf/2306.13394.pdf



LLaVA: Visual Instruction Tuning

H. Liu, C. Li, Q. Wu, Y. Lee, Visual Instruction Tuning, https://arxiv.org/pdf/2304.08485.pdf, 2023/04/17

https://arxiv.org/pdf/2304.08485.pdf


Looking Back

• Convergence of vision-language architecture
• Vision encoder + language decoder
• It was not obvious
• Is it optimal?

• Benefits of leveraging language models for vision tasks
• Open vocabulary
• Task unification
• Generalization



Outline

• A brief history of multimodality models
• Understanding
• Generation
• Unification
• Agentic

• Special topics
• Does image help with reasoning?
• Token compression

• Future directions
• 3D, embodied agents, robotics
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Aesthetics Spatial 
relation

Text
rendering

Semantic
alignment Speed

DALL-E3 x

GPT-4o x x x

Diffusion vs Autoregressive



Diffusion vs Autoregressive

• Diffusion
• Better aesthetic quality
• Faster especially with few-stop distillation

• Autoregressive
• Leveraging pretrained LLM

• Better semantic alignment
• Text generation

• Flexible in image size and video length expansion



NUWA-Infinity: Autoregressive over Autoregressive Generation for Infinite Visual Synthesis Wu et al, arXiv 2207.09814, Oct. 2022

38912 x 2048AR: Flexibility in image size expansion

“Along the River During the Qingming Festival”
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06/24 09/24 12/24 03/25 06/25

➢ All models are autoregressive except Show-O
➢ Show-O: discrete diffusion
➢ Janus-Pro and UniGen use separate tokenizers: better accuracy in understanding tasks
➢ GPT-4o proves that unified model can excel in both understanding and generation
➢ Need more and performant open-source unified models
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Agentic model goes beyond perception

Perception Reasoning Acting

GUI Navigation Tool-Use

Two examples of agentic multimodality models



GUI Navigation: Computer-Using Agent

• OpenAI Operator
• Vision + reasoning
• Multi-turn RL

• Benchmarks
• OSWorld
• WebArena
• WebVoyager
• MageBench
• …+



GUI Navigation: Computer-Using Agent

“Find a recipe for Baked Salmon that 
takes less than 30 minutes  to 
prepare and has at least a 4-star 
rating based on user reviews.”

WebVoyager: Building an End-to-End Web Agent with Large Multimodal Models, He et al, 2024



Vision Tool-Use: O3/O3-Pro

What color is the dog?

Multimodal Reasoning for Visual-Centric Long-Horizon Tasks, Zhengyuan Yang, CVPR2025 Tutorial
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Does Image Help with Reasoning?

• Tic-Tac-Toe game

Where should black play next?



Version 1: Text only

Alice and Bob are playing a game on a 3x3 grid. The points on the grid are 
labeled top to bottom, left to right, as A,B,C,D,E,F,G,H,I. Alice plays white. Bob 
plays black. At each turn, the player places a stone of the corresponding color 
onto one of the positions that have not been occupied. Whoever has three stones 
in a line (horizontal, vertical, or diagonal) wins. 

Alice first places a white stone at A. Bob places a black stone at B. Then Alice at 
C. Then Bob at G. Alice D. 

Where should Bob play next?



Version 2: Text + Image

Alice and Bob are playing a game on a 3x3 grid. The points on 
the grid are labeled top to bottom, left to right, as 
A,B,C,D,E,F,G,H,I. Alice plays white. Bob plays black. At each 
turn, the player places a stone of the corresponding color onto 
one of the positions that have not been occupied. Whoever 
has three stones in a line (horizontal, vertical, or diagonal) 
wins. 

Alice first places a white stone at A. Bob places a black stone 
at B. Then Alice at C. Then Bob at G. Alice D. 

Where should Bob play next?
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Tic-Tac-Toe Extensions (not seen by Frontier 
models)

TTT-Bench: A Benchmark for Evaluating Reasoning Ability with Simple and Novel Tic-Tac-Toe-style Games, arXiv.2506.10209 

https://arxiv.org/abs/2506.10209


A B C

D E F

G H I

Visual Is Helpful for Human



Is Visual Helpful for LLMs?

Text > Text + Image > Image



Is Visual Helpful for LLMs?

Text > Text + Image > Image
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Token Compression
• Images are represented as tokens
• Too many tokens

𝑤 × ℎ
𝑤

𝑓
×

ℎ

𝑓

𝑓 = 8 𝑜𝑟 16

EMU3: 1024 × 1024
1024

16
×

1024

16
= 4096 tokens

tokens



1D Tokenization
• 128 tokens  for 1024x1024 image
    vs 4096 tokens in EMU3
• 32x tokens reduction

SoftVQ-VAE: Efficient 1-Dimensional Continuous Tokenizer, Chen et al, CVPR 2025
Masked autoencoders are effective tokenizers for diffusion models. Chen et al, ICML 2025 



1D Binary Image Tokenizer (1D BiT)

• Enabling both diffusion and Autoregressive image generation 

Instella-T2I: Pushing the Limits of 1D Discrete Latent Space Image Generation, Wang et al, 2025 https://arxiv.org/abs/2506.21022



1D Binary Image Tokenizer (1D BiT)

• Enabling both diffusion and Autoregressive image generation 

Instella-T2I: Pushing the Limits of 1D Discrete Latent Space Image Generation, Wang et al, 2025 https://arxiv.org/abs/2506.21022



T2I using 1D BiT (Instella-T2I)

Instella-T2I: Pushing the Limits of 1D Discrete Latent Space Image Generation, Wang et al, 2025 https://arxiv.org/abs/2506.21022



1024x1024 T2I Evaluation

GenEval

• 128 tokens for both Instella-AR and Instella-Diff
• 32 times token reduction compared to EMU3
• Fully open public datasets for training
• Instella-Diff: competitive against SOTA models like SDXL that use in-house data

Instella-T2I: Pushing the Limits of 1D Discrete Latent Space Image Generation, Wang et al, 2025 https://arxiv.org/abs/2506.21022



1024x1024 T2I Evaluation

GenEval

• 128 tokens for both Instella-AR and Instella-Diff
• 32 times token reduction compared to EMU3
• Fully open public datasets for training
• Instella-Diff: competitive against SOTA models like SDXL that use in-house data

Instella-T2I: Pushing the Limits of 1D Discrete Latent Space Image Generation, Wang et al, 2025 https://arxiv.org/abs/2506.21022



Outline

• A brief history of multimodality models
• Understanding
• Generation
• Unification
• Agentic

• Special topics
• Does image help with reasoning?
• Tokenization vs compression

• Summary and future directions



Summary

• By leveraging language models, multimodality field has been 
revolutionized

• Diffusion has been dominating on image/video generation, but AR is 
coming back, leading to unification where language model plays a 
central role for both understanding and generation

• Agentic models extend perception to reasoning+acting, leveraging 
language model’s basic reasoning and tool-use capabilities and RL 
framework

• There is a large intelligence gap on reasoning with images
• Token compression has huge potential for image/video generation 

and understanding



Future Directions
• Unification

• How to get visual understanding and generation to help each other
• Can multimodal learning help improving language model?

• 3D 
• Hot topic in CVPR2025, VGGT
• Need to inject semantics by integrating with language
• Component semantics: dog->walk, car->run

• Image/Video compression vs. token compression
• Token redundancy in both visual understanding and generation
• Language-conditioned token compression

• Embodied agents and robotics
• Robots need a brain:

• Physical abilities are amazing, but Intelligence is lacking
• Multimodal models to play a major role
• Learning paradigm shift: learning from interaction in real time, persistent memory, 

personalization

VGGT: Visual Geometry Grounded Transformer, Want et al, CVPR2025





vggt - a Hugging Face Space by facebook

https://huggingface.co/spaces/facebook/vggt
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